Patrick Truchon's Web Portal

Conceptualizing Physics

Posted by Patrick on June 27, 2011

The following two videos address one of the questions that I ponder the most: what are the best ways to help students understand concepts in mathematics and physics?  Although both speakers reach similar conclusions, they each reveal many other insights that are also very important.  Here are a few lessons that I take from each.

Derek Muller (@veritasium) shows that:

  • Students new to physics come with misconceptions they think are true (about the world of physics).
  • Because of this, they don’t pay their utmost attention to the videos (which might as well be traditional lectures).
  • Which causes them to think that what is being presented is the same as what they think.
  • So they don’t learn anything.
  • While getting more confident in their misconception.

But his interviews with the students also showed something else:

  • Students are bad at judging how much a video (or lecture) is helping them learn.

This part I found very interesting.  Indeed, the “clear” videos didn’t help them learn as much as the “confusing” ones.  Although Derek doesn’t make that leap, I think this applies equally well to traditional classroom lectures.  Further more, it also suggests that students’ evaluations of teachers are (at best) an incomplete metric of teachers effectiveness, if not a completely bad one.  Of course, it doesn’t mean that the way to help students is to be as confusing as possible, but now I’m wondering if the good feedback I tended to get about my teaching was such a good thing…

In essence, Derek says that for students to really learn physics, they have to engage and struggle with the concepts on their own terms.  Delivering information is not sufficient for learning.  Dr. Eric Mazur (@eric_mazur) also comes to the same conclusion but in the context of the lecture hall:

This time, Dr. Mazur breaks down learning into two parts [3]:

  1. Delivery of information
  2. Synthesis of information

Traditionally, classroom lectures have focused on the first part, but it is the second part that constitute true learning.  Thus, he assigns readings ahead of time (or finds other ways for students to get the information before they enter the classroom) so that students can spend more time in class synthesizing information instead of being passive recipients.

Dr. Mazur also reaches a second conclusion: Conceptual understanding leads to good problem solving abilities, but good problem solving abilities doesn’t necessarily implies conceptual understanding.  This strikes at the heart of traditional assessment methods.  Simply giving problems to solve doesn’t discriminate between those who understand what’s going on, and those who have memorized an algorithm they don’t really understand.

In my practice, I always try to emphasize the “why” of things over the “how” (mainly because I have a bad memory myself).  It’s encouraging to see research that validates that philosophy, and enlightening to see the various methods used by these inspiring educators.

  • Update: I added a reference relating to Howard Gardner that is very relevant to this post. [4]
  • Update 2: I added a reference to an article describing the results of team of researchers at UBC that supports what Dr. Mazur is doing. [5]


  1. Veritasium, Khan Academy and the Effectiveness of Science Videos ,
  2. Eric Mazur, Memorization or understanding: are we teaching the right thing?
  3. Mazur Group Publication, Peer Instruction: Making Science Engaging,
  4. The Daily Riff, Misconceptions About Learning & Teaching
  5. ScienceNOW, A Better Way to Teach?

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s